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Abstract—Current reputation systems for peer-to-peer (P2P) file sharing networks suffer from high overhead on reputation querying.
Also, purely relying on a threshold to detect malicious nodes may make a high-reputed node be reluctant to further increase its
reputation in these reputation systems. On the other side, the social network concept of ”friendship foster cooperation” can be utilized
to alleviate the high overhead in reputation systems. However, the limited number of friends limits the availability of file resources
in these approaches.To overcome the drawbacks, we propose a social network based reputation system, namely SocialTrust, that
synergistically leverages the social network connections and traditional credit based reputation system to provide efficient reputation
management for P2P file sharing. In SocialTrust, each node favors friends for service transactions, which are resulted from both real life
acquaintance and online partnership established between high-reputed and frequently-interacted nodes. When no friends are available
for a request, a node chooses the server with the highest reputation. The benefits of friendship and partnership on file sharing and cost
saving encourage nodes to be continuously cooperative. Further, SocialTrust considers the number of friends/partners and reputation
of a node in reputation rewarding/punishment in order to realize accurate reputation evaluation. SocialTrust can also prevent certain
attacks such as deny of service and collusion. Extensive trace-driven simulation demonstrates the effectiveness of SocialTrust.

Index Terms—Social networks, Reputation system, Peer-to-peer, File sharing
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1 INTRODUCTION

Due to the open nature of the peer-to-peer (P2P) en-
vironment, P2P file sharing systems are prone to have
selfish and misbehaving nodes. Selfish nodes are not
cooperative in providing files, but still would like other
nodes to comply to their requests [1], [2]. Misbehaving
nodes can distribute tampered files, corrupted files or
files with malicious code into the system, which could be
further spread by unsuspecting users. For example, 85%
of Gnutella users are selfish nodes sharing no files, and
45% of files downloaded through the Kazaa file sharing
application contain malicious code. Therefore, incentives
are needed to encourage cooperation in P2P networks.
Reputation system, as a cooperation incentive method,
has been widely studied in recent years [3]–[8]. In a
reputation system, a node’s reputation is built based on a
collection of feedbacks from other nodes. A pre-defined
reputation threshold is used to classify nodes to reputed
or selfish nodes. However, a clever node can sustain
in the system by maintaining its reputation just above
the threshold and take this advantage for uncooperative
behaviors. Further, frequent reputation querying can eas-
ily overload the reputation center, leading to degraded
service quality in P2P systems.

Recently, emerging P2P file sharing systems have
been proposed to exploit social network connections
to enhance service cooperation [9]–[12] or malicious
node detection [13] by leveraging the social property of
“friendship fosters cooperation” [14]. Naturally, such an
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idea can alleviate the necessity of reputation querying
and reduce the load on reputation centers. However, the
friendship network of a node usually only consists of
a small part of the entire P2P network, which means
that a client may not be able to find a server among its
friends. Thus, these social network based approaches,
if imported into P2P file sharing systems, limit the
objective of widely sharing of files.

In this paper, we propose a novel reputation system,
namely SocialTrust, that synergistically exploits both
traditional credit based reputation systems and social
networks to overcome their individual shortcomings
with three main components:

(1) Social networks (friend network and partner net-
work). Each node maintains two lists of mutual-trusted
nodes, friend-list containing friends from real life (i.e.,
real-world acquaintance) and partner-list containing
frequently-interacted high-reputed nodes (i.e., online ac-
quaintance). They both represent mutual trust relation-
ship and encourage nodes to be cooperative. Firstly,
nodes do not want to damage friendship easily to main-
tain their real-life reputations. Secondly, nodes would
like to have more partners to gain more benefits. To
avoid abusing social connections for attacks, nodes set
high standard for friendship and partnership establish-
ment, as introduced in Section 4.1.

(2) Lightweight reliable server selection. Given a number
of server options, a client chooses a friend or partner,
if available, without querying their reputations. When
multiple friends exist, the client chooses the one with
the highest local ranking, which is decided by the rating
for services previously received from each friend.

(3) Reputation evaluation. We define a node’s reputation
as the amount of credits it accumulates through service
providing or rating. As aforementioned, both friendship
and partnership represent mutual trust in SocialTrust.
Therefore, the social degree, i.e., the number of friends
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and partners, of a node represents its level of trust from
friends/partners [15]. On the other side, the reputation
of a node represents its trust from non-friends/partners.
Then, SocialTrust defines a node’s impact factor by
considering both its social degree and reputation and
uses it to adjust reputation reward or punishment after
a transaction, e.g., giving lower weight to ratings from
lower-impact nodes and vice versa.

In SocialTrust, when a node becomes non-cooperative
in either service providing or service rating, the file
sharing system will be affected. Then, as in previous
reputation systems [4], [6], [7], we assume that a node’s
trust determines its willingness to be cooperative in both
activities. In other words, we do not separate the serving
trust and rating trust but use a union value to represent
its cooperation level in the system. Therefore, a node’s
trust (social connections and reputation) is determined
based on both file serving and rating, which encourages
nodes to be cooperative in both activities.

The above designs lead to several benefits to the P2P
file sharing system. Firstly, the first two components re-
duce the reputation querying cost and service delay, and
meanwhile still supports the objective of open and free
P2P services. This encourages nodes to be continuously
cooperative in order to keep their friends and partners.
Secondly, with the third component, SocialTrust assigns
reputation punishment proportional to a server’s impact
factor. This means that a node’s reputation is built gradu-
ally, but drops in proportional to its impact factor, which
helps to prevent nodes with a high reputation or social
degree from gaining unfair advantages [16]. As a result,
SocialTrust can ensure high-quality file sharing among
nodes and potentially, enhance the popularity of these
P2P file sharing systems.

To show SocialTrust’s effectiveness on providing coop-
eration incentives, we use game theory to analyze node
behaviors in Section 4.4. We also briefly discuss how to
prevent certain attacks in SocialTrust in Section 4.6. In
summary, SocialTrust has below contributions compared
to previous reputation systems [3]–[8].
(1) SocialTrust exploits both social networks and repu-

tation systems for efficient reputation management,
i.e., reducing the reputation querying cost without
constraining server options.

(2) SocialTrust proposes to consider both social degree
and reputation of a node to adjust the weight of its
rating for others and the degree of punishment for it.
Thus, node reputation is more accurately evaluated
and high-reputed nodes can hardly take advantage
of its reputation for misbehavior, thereby motivating
them to be constantly cooperative.

(3) SocialTrust considers both service rating and pro-
viding in reputation evaluation, which encourage
nodes to be cooperative in both activities.

The purpose of SocialTrust is not to combine P2P file
sharing services with online social networking services.
Rather, SocialTrust exploits the trust within social net-
works (i.e., among friends and partners) for efficient rep-
utation management, thereby enabling users to obtain
the right file more efficiently. From this perspective, users
would be willing to maintain certain social relationships

for their own benefits. Actually, the Maze [17] P2P file
sharing system has already provided an online social
networking component to allow creating friendships for
file sharing. Therefore, the proposed SocialTrust can be
accepted by users in practical systems.

SocialTrust only needs users to update the client
software to support the social network component and
the server to update the reputation evaluation function.
More importantly, in addition to the P2P file sharing
applications, e.g., BitTorrent [18] and Akaimai [19], So-
cialTrust can also be applied to other applications where
transactions are conducted in a peer-to-peer manner,
such as video streaming through PPTV [20], routing in
mobile ad hoc networks [21], and online business (e.g.,
eBay [22] and Amazon [23]). In these systems, nodes
can follow the principles in SocialTrust to build social
networks to facilitate the reputation management.

The remainder of this paper is arranged as follows.
Section 2 presents the related work. Section 3 introduces
the system background. Section 4 introduces the design
of SocialTrust and how to prevent certain attacks. In
Section 5 and Section 6, the performance of SocialTrust
is evaluated with real trace and PlanetLab testbed. Sec-
tion 7 concludes this paper with future work.

2 RELATED WORK
In recent years, numerous research works have been

conducted on reputation systems [3]–[8] in P2P net-
works. These works focus on how to aggregate reputa-
tion ratings and calculate the reputation efficiently and
accurately. Though these systems are effective, they fail
to utilize the social network properties in P2P file sharing
to reduce reputation querying cost and encourage con-
tinuous cooperation, as mentioned in the introduction.
Zhou and Hwang [3] observed a power-law distribution
in user feedbacks in eBay and proposed the PowerTrust
reputation system that selects few most reputable nodes
to aggregate reputation feedbacks in order to improve
the global reputation accuracy and aggregation speed.
Zhang et. al [4] presented a reputation system built
upon the multivariate Bayesian inference theory. It offers
a theoretical basis for clients to predict the reliabil-
ity of candidate servers based on self-experiences and
feedbacks from peers. GossipTrust [5] uses randomized
gossiping and power nodes to enable fast aggregation
and fast dissemination of global reputation. PeerTrust [6]
includes a coherent adaptive trust model for quantifying
and comparing the trust of peers based on a transaction-
based feedback system, which combines multiple param-
eters such as feedback a peer receives from other peers
and the total number of transactions a peer performs.
EigenTrust [7] computes a global reputation value for
a peer by calculating the left principal eigenvector of a
matrix of normalized local reputation values, thus taking
into consideration the entire system’s history with each
peer and increasing the accuracy of global reputation.
SFTrust [8] separates trust between the service providing
and feedback in order to take full advantages of peers’
service abilities for high performance.

In these reputation systems, a node must query the
reputation values of the server options to select suitable
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servers, which generates high cost. Also, few systems
leverage node trust in the social network for accurate
global reputation evaluation.

There are also a number of works that leverage social
networks for reliable services in P2P networks [9]–[13],
[24] based on the property of “friendship foster coopera-
tion” [14]. Since a user’s friends are usually trustworthy
and share similar interests with it, Chen et al. [24]
exploited the friend relationships to perform reputation
estimation, i.e., a node selects a file based on its friends’
evaluation on the file. TRIBLER [9] is a social-based P2P
file sharing system, which enables fast, trusted content
discovery and recommendation by allowing nodes to
retrieve files from taste groups, friends and friends-of-
friends. Turtle [10] builds its overlay on top of pre-
existent trust relationships among its users in order to
withstand most of the denial of service attacks and allow
both data sender and receiver anonymity. MyNet [11] is
a P2P middleware platform and user interaction tool that
allows everyday users to easily and securely access and
share their devices, services, and content in real time. In
the F2F system [12], a node chooses its neighbors (the
nodes with which it shares resources) based on existing
social relationships. This approach provides incentives
for nodes to cooperate. SybilGuard [13] exploits the
property that social connections usually represent trust
relationships to detect Sybil nodes. It is based on the
property that Sybil nodes usually have disproportion-
ately small amount of connections with honest nodes.

These methods mainly use the trust among social
relationship directly for certain services. However, since
the friends of a node only cover part of the whole nodes
in the system, by constraining the options of servers to
friends, the objective of widely sharing of individual
resources, even between strangers, cannot be realized
in P2P file sharing applications. SocialTrust solves this
problem by considering both social networks and repu-
tation system for reputation system, thereby supporting
widely and freely P2P file sharing.

3 BACKGROUND

3.1 System Environment

SocialTrust is based on a traditional credit based repu-
tation system, which aggregates service feedbacks, cal-
culates reputation reward or punishment, update node
reputation values, and replies to reputation queries. We
assume that nodes can gradually build social connec-
tions with its friends (i.e., real-world acquaintances) and
partners (i.e., online acquaintances) in the P2P network.
This can be easily supported on client software, as in the
Maze [25] system. Like previous social network based
server selection methods [9]–[12], [24], SocialTrust con-
siders friends/partners in the designed social network
as trustable. Requesting for services from friends can
enhance service quality since people do not want to dam-
age their real-life reputations and instead would wish to
build their real-life reputations through cooperation.

3.2 Trust Representation in SocialTrust
In SocialTrust, we define a node’s trust as its cooperation
level in service providing/rating, i.e., how likely it is to
provide high-quality file and honest rating.

A node’s trust is reflected in both the designed so-
cial network and the reputation evaluation system. As
introduced in Sections 4.1 and 4.2, friendship and part-
nership are built based on mutual trust for file sharing.
Therefore, the social degree, i.e., the number of friends
and partners, of a node represents its level of trust from
friends/partners. On the other side, as introduced in
Section 4.3, a node’s reputation is accumulated through
service providing or rating with non-friends/partners.
Therefore, the reputation value of a node represents its
level of trust from non-friends/partners.

Considering a node with high reputation or high social
degree is more likely to be trusted and be selected as the
server, SocialTrust further defines the impact factor for
each node based on both social degree and reputation. It
is used to evaluate the reliability of a node’s rating and
adjust the punishment to a node, the details of which
are introduced later in Section 4.3.

As a result, the punishment for misbehavior in Social-
Trust lies in two aspects: its reputation will be reduced
or its friendship/partnership may be terminated (as in
Section 4.1). When a node’s reputation falls below a
certain threshold, the TA will notify all nodes to isolate
the node, i.e., its file requests will be rejected directly.
When a node has no friends/partners, it cannot take the
benefits of friendship/partnership for file sharing.

3.3 Service Process
We consider a generic P2P file sharing environment in
this paper. We define the node that receives a file as
client, denoted by Nc, and the node that offers the file
as the server, denoted by Ns. We define the reputation
center as Trust Authority (TA) in SocialTrust. It is running
on the server of the P2P file sharing system and is
maintained by the owner of the P2P file sharing system.
The system owner would be willing to run the TA since
it can ensure high-quality file sharing, thereby providing
better user experiences to nodes.

Then, the process of an interaction in such a system
can be summarized as:
(1) A client generates a file request and identifies avail-

able servers for the request from peers in the system.
(2) The client selects one server based on their trustwor-

thiness (i.e., probability of providing good services),
which are obtained from the TA, and sends the
request to the selected server.

(3) Upon receiving the file request, the server decides
to offer or not to offer the requested file.

(4) Upon receiving the file, the client rates the quality
of the received file and sends the rating to the TA
to update the reputations of the two nodes.

In SocialTrust, we do not consider a general concept
of Quality of Service (QoS) but define it as the quality
of the obtained file, i.e., whether it is complete and
correct. Therefore, nodes rate the received file by check-
ing whether it is complete and correct. As in [3]–[8],
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the feedbacks from nodes are essential to evaluate node
reputation. Then, the goal of our work is to improve the
cost and effectiveness of previous reputation systems.
We follow their assumption that the feedback from nodes
can generally reflect the QoS, though ratings from dif-
ferent users for the same service may fluctuate. In other
words, we accept minor fluctuations in the rating. In case
the rating is dishonest, i.e., far from the actual value, the
server can file a claim to the TA to disagree with the
rating, like in the he-said-she-said attack. The TA then
checks whether the rating is honest or not. The details
on how to handle this is introduced in Section 4.6.1.

For easy description, we regard file sharing as a kind
of service in the system, i.e., the server node provides
the file service to the client node. Then, the cooperative
and non-cooperative behaviors of the server and client
node are defined as below.

Server node: A server node is cooperative when it
provides the service with high quality for the received re-
quest. In contrast, a server node is non-cooperative when
it refuses to provide service or even acts maliciously.

Client node: A client node is cooperative when it rates
received service honestly. In contrast, a client node is
non-cooperative when it purposely distorts its rating
(i.e., giving poor/good ratings to good/bad services).

4 THE DESIGN OF SOCIALTRUST
SocialTrust is a credit based reputation system for P2P

file sharing systems. It has three main modules.
Social networks (friendship and partnership networks): In

the friendship network, a user’s neighbors are his/her
friends (i.e., real-world acquaintance). In the partner-
ship network, a node’s neighbors are high-reputed and
frequently-contacted nodes (i.e., online acquaintances).
Both relationships represent mutual trust. Nodes set high
standard for them to avoid abusing them for attacks.

Lightweight reliable server selection: The friendship and
partnership networks are exploited to alleviate the rep-
utation querying cost on nodes and the reputation sys-
tem. A client directly selects its friends or partners, if
available, from the server option list, as the servers
for its requested service. Only when the list does not
include any friend nor partner, the client queries for the
reputation values of available servers. As a result, many
reputation querying operation can be avoided.

Reputation evaluation: Since both the reputation and
social degree of a node reflect its trustability when it
behaves cooperatively and the level of potential harm
when it is non-cooperative (high-reputed and high-
degree nodes have high probability to be selected as
servers). We consider both a node’s social degree and
reputation to adjust the credibility of its service rating
and reputation punishment. We present the details of
each module in the following.

4.1 Social Networks
The social relationships of a node in SocialTrust include

both offline friends and online partners. Trust relation-
ship is not bi-directional in reality. However, we require
that the friendship and partnership to be bidirectional

to represent mutual trust for file sharing and ensure the
fairness among nodes. Since friends are connected by
certain social relationships in a social community, they
would offer high QoS to each other with the intention
of building high real-life reputations in their social com-
munities (e.g., research lab and department). Thus, the
friendship network motivates nodes to be cooperative
continuously. A node’s partners also have high proba-
bilities to offer high QoS to the node according to their
previous interaction (collaboration) records. Therefore, in
order to maintain the partnership, which is a reflection of
its trustability in file sharing, nodes would not arbitrarily
decrease the QoS of their services.

Each node also maintains local ranks for friends and
partners. For each friend/partner, the node calculates
the average rating for services obtained from it and
then ranks them in descending order. Such a local rank-
ing is used to further compare the trust of different
friends/partners for server selection, which will be in-
troduced later in Section 4.2.

4.1.1 Friendship Maintenance
The friendship update (i.e., addition and deletion) in
SocialTrust is an user-dependent behavior, and users
are responsible for the consequence of adding a new
friend. In other words, rational users would be cau-
tious in accepting friend invitations. Consequently, the
friendship network can reflect trustable and stable social
relationship in real lives. Since the friendship is user
centric, each user maintains its own friend-list. When a
node, say Ni, wants to add another node, say Nj , into its
friend-list, it sends a friend invitation to Nj . If Nj accepts
the invitation, they become friends of each other.

A node may remove a friend when it receives unco-
operative service from a friend or is notified by the TA
that the node is a malicious node. If a user deletes a
friend, they remove each other from their friend-lists.
This process is enforced by fairness consideration of
individual node that when a node finds that another
node stops taking it as a friend (i.e., no longer trusting
it), it would naturally remove the other node from its
friend list (stop trusting it too).

4.1.2 Partnership Maintenance
A bi-directional partnership is established when both
below conditions are satisfied.
(1) The interaction frequency between the two nodes is

larger than a threshold, denoted by Tf .
(2) Each node’s reputation value is larger than the

partnership threshold, denoted by Tr.
The above two requirements match how people build
partners in their businesses, i.e., entities with good and
frequent past transaction records are more reliable.

The interaction frequency of a node, say Ni, with
another node, say Nj , is calculated by

F (Ni, Nj) = γFold(Ni, Nj) + (1− γ)Fnew(Ni, Nj)

where Fnew and Fold denote the frequency measured in
the current and the previous period, respectively, and
γ ∈ [0, 1] is an adjusting factor. The update period is the
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Fig. 1: The process of a client’s server selection.

average time between two interactions among nodes in
the system multiplied by a factor. In order to avoid
periodical reputation querying for timely partnership
update, the partnership of each node is maintained on
the reputation system. After each reputation update, the
reputation system notifies each node the change of part-
nerships,i.e., adding new partners or removing existing
partners. Similar to the friendship, a node would not
delete partners arbitrarily to save reputation querying
cost and receive reliable services.

4.2 Lightweight Reliable Server Selection
Since the friendship and partnership represent certain

trust, we exploit this property to alleviate the reputation
querying cost. Specifically, a node directly selects friends
or partners, when available, as the server for requested
services without querying their reputations.

Figure 1 shows the process of a client’s operation in
server selection. When a client needs a service, it first
identifies the available servers (i.e., server candidates) for
the requested file through the file lookup function pro-
vided by the system. In this process, overloaded servers
are excluded from the available server list to realize load
balance and avoid large delay on file sharing. To realize
this, the file lookup function simply does not check
whether the overloaded servers contain the requested
file. With such a scheme, the node with a high reputation
and many friends will not receive too many requests and
get overloaded. As a result, file requests are distributed
to more servers in the system, leading to more balanced
load and higher overall efficiency.

The client node then checks whether any of its
friend(s) or partner(s) are in the list. If yes, it skips the
step of querying the available servers’ reputations and
selects the friend or partner with the highest local rank-
ing as the server directly. Each node records its average
rating for services received from each friend/partner and
ranks them in descending order of the average rating. If
there is no friend or partner in the server list, it queries
the reputation value of each server candidate from the
reputation system, and chooses the one with the highest
reputation. After the transaction is completed, the client
sends the service rating to the reputation system. If the
service is from a friend or partner, the node records the
rating for local ranking.

4.3 Reputation Evaluation
The reputation system updates node reputations based
on received service rating. In order to deter reputed
nodes from conducting occasional misbehavior while

still being regarded as reputed, we follow the principle
that reputation is built gradually, but drops in pro-
portional to its ability to bring about harm [16]. The
probability that a misbehaving node is chosen as a server
determines its potential harm to the system performance.
Recall a node either selects its friend/partner or the
available server with the highest reputation as the server
for its request. As a result, the probability is determined
by the node’s reputation and social degree, which is the
number of friends and partners. Therefore, we propose
a metric called Impact Factor (denoted by T ∈ [0, 1]) that
integrates both reputation and social degree:

T (i) = β
R(Ni)

Rmax
+ (1− β)D(Ni)

Dmax
, (1)

where R(Ni) is the reputation of node Ni, Rmax is the
maximal reputation value allowed in the system, D(Ni)
is the social degree of Ni, Dmax is the maximal number
of friends and partners a node can have in the system,
and β is an adjusting factor. Then, the impact factor of a
node represents its harm when it is non-cooperative and
the credibility of its service rating when it is cooperative.

SocialTrust considers both file serving and service rat-
ing as a part of a node’s willingness to be cooperative in
the system. Each node rates the server that has provided
a file to it. Though this brings about extra costs, it is nec-
essary to ensure the correctness of the reputation system
and protect nodes from non-cooperative or malicious
nodes, as in all previous reputation systems proposed
by other researchers [3]–[8]. There are also ways that
can reduce the load on clients and meanwhile ensure
the collection of ratings for correct reputation evaluation.
For example, we can let each node set a default rating
for good services. Then, nodes do not need to manually
input rating for the service provider unless it is not
satisfied with the service. Due to page limit, we leave
the investigation on such methods to future work.

We name the file sharing process between two nodes
as an interaction between them. Each interaction is a
game, in which each node selects a strategy for the
sharing of a file: cooperative and non-cooperative. We
use Tc and Ts to represent the impact factor of the
client node and the server node, respectively. In below
discussion, we assume file quality/rating accuracy can
be correctly checked by the TA. We discuss how to check
whether the rating and actual file quality are consistent,
i.e., preventing he-said-she-said attack, in Section 4.6.1.

4.3.1 Cooperative Server and Cooperative Client
In this case, the server provides requested service to
the client, which then rates the quality of the received
service honestly. Then, the rating is always larger than 0:
Yc ∈ (0, 10]. The reputation system decides whether the
rating is honest by asking the server whether it accepts
the rating. If the server accepts the rating, the reputation
credits given to the server node (Rs1 ∈ [0, 1]) and the
client node (Rc1 ∈ [0, 1]) are{

Rs1 = (1 + Tc ∗ Yc/10) ∗ α
Rc1 = α

(2)

In Equation (2), α ∈ [0, 0.05] is the unit reputation credit
for file serving and service rating. Thus, the amount of
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reputation credits earned by the server depends on the
rating and the impact factor of the client. The rationale
behind such a design is that the higher impact factor
the client has, the more trustable its rating is, and more
reward should be assigned to the server. Equation (2)
also shows that a server prefers to serve clients with high
impact factor in order to earn more reputation, which
motivates nodes to always maintain high impact factor.

4.3.2 Cooperative Server and Non-cooperative Client
In this situation, the server is cooperative in providing
service but the client gives a bad feedback or does
not provide any feedbacks. Then the server refuses to
accept the rating (or no rating) given by the client and
files a claim. When the non-cooperative behavior of the
client is confirmed, the reputation credits assigned to
the server (Rs2 ∈ [0, 1]) and the client (Rc2 ∈ [−1, 0])
are as below. We explain how the reputation system
investigates whether the client rates honestly later.{

Rs2 = α
Rc2 = −(1 + Tc) ∗ α

(3)

We only assign the unit credit to the server since the rat-
ing provided by the client is dishonest and thus cannot
reflect the QoS of the service provided by the server. The
non-cooperative client is punished based on its impact
factor: the higher impact factor it has, the more punish-
ment it receives. Such a design reduces the reputation
of nodes with higher impact factor more quickly when
they are non-cooperative, preventing them from taking
advantage of the high impact factor for non-cooperative
behavior. Comparing Equation (3) with Equation (2), we
see that the server earns Tc ∗ α less reputation credits,
which is the cost of choosing a dishonest client. Thus,
servers are further motivated to provide service to high-
reputed nodes, which in turn, motivates nodes to be
cooperative in serving and rating.

4.3.3 Non-cooperative Server and Cooperative Client
In this case, the server provides malicious service and
the client node rates the service honestly (i.e., giving bad
feedback). We consider how to check whether the service
and rating are consistent in Section 4.6.1. Therefore,
the rating is smaller than 0: Yc ∈ [−10, 0). Then, the
reputation credits assigned to the server (Rs3 ∈ [−1, 0])
and the client node (Rc2 ∈ [0, 1]) are{

Rs3 = −(1 + Tc ∗ |Yc|/10) ∗ (1 + Ts) ∗ α
Rc3 = α

(4)

Above design follows the rationale that a non-
cooperative server with high impact factor receives more
punishment to prevent it from exploiting high reputation
for misbehavior. The unit credit (α) is assigned to the
client to encourage honest rating.

4.3.4 Non-cooperative Server and Non-cooperative
Client
This situation occurs in collusion, where the server
provides service with low quality or does not provide
service at all, but the client still gives good feedback in

order to boost the server’s reputation. We first assume
that collusion is not detected. In this case, the reputation
credits assigned to the server node (Rs4 ∈ [0, 1]) and the
client (Rc4 ∈ [0, 1]) are the same as those in Equation (2).
But in reality, collusion generally is detected with certain
probability under different detection algorithms. When
the collusion is detected, involved nodes are punished.
Then the actual credits assigned to collusion nodes can
be expressed as{

Rs4 = Dd ∗Rs1 = Dd ∗ (1 + Tc ∗ Yc/10) ∗ α
Rc4 = Dd ∗Rc1 = Dd ∗ α

(5)

where Dd ∈ [−1, 1) is the adjusting factor considering the
possible punishment for detected collusion behaviors.
It is determined based on the probability of successful
detection and the amount of punishment for collusion.

The collusion group can be detected based on their
behavior pattern, i.e., always providing good feedbacks
to each other and bad service/rating to outside nodes.
We have proposed a method to detect colluding nodes
in Section 4.6.4. Our previously proposed method [26]
and other methods listed in the paper for combating
collusion can also be used to deal with collusion in
SocialTrust. Due to page limit, we leave the work on
how to determine Dd to future work.

4.4 Game Theory Analysis
We analyze the behavior of both server and client in

SocialTrust with game theory. We assume that nodes
are rational, i.e., they always select the strategies that
can maximize their benefits. When two nodes conduct
a transaction, each node needs to either provide a file
or rate the file. Therefore, we do not explicitly consider
the cost for service providing or rating in the game the-
ory analysis. We first define notations in an interaction
between a client node and a server node.
(1) Lc: The loss of the client when receiving non-

cooperative service, which includes the cost for
requesting the service.

(2) Bc: The benefit of the client when receiving cooper-
ative service.

(3) Ls: The loss (i.e., resource consumption) of the
server node when providing cooperative service.

(4) Bs: The benefit of the server when it is non-
cooperative, which includes the saved resource
consumption and the overall profit from its non-
cooperative behavior.

(5) lr: The loss of a node when its reputation credit
decreases by one unit, i.e., the decrease of the num-
ber of partners and the increase of the number of
reputation queries and service rejections.

(6) br: The benefit of a node when its reputation credit
increases by one unit, i.e., the increase of the number
of partners and the decrease of the number of
reputation queries and service rejections.

Clearly, Lc and Bc depend on the QoS of the service
received by the client and vary on different scenarios.
We can regard them as two fixed values if we only
consider cooperative and non-cooperative QoS cases, as
in previous reputation systems. Similarly, Ls and Bs can
also be regarded as fixed values.
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4.4.1 Analysis of the Interactions among Nodes
Based on above design, the overall benefits for the client
node and the server node after one interaction are shown
in Table 1. In the table, Co., Non., and Cli. denote
cooperation, non-cooperation, and Client respectively.

TABLE 1: Benefit matrix for interactions among nodes in SocialTrust

Server

Cli.
Co. Non.

Co. Bc + Rc1br , Rs1br − Ls Rc3br − Lc, Bs + Rs3lr
Non. Bc + Rc2lr , Rs2br − Ls Rc4br − Lc, Bs + Rs4br

We first analyze the action of the client. When the
server is cooperative, the benefit of the client is (Bc +
Rc1br) when being cooperative and is Bc + Rc2lr when
being non-cooperative. Since Rc1 = α and Rc2 = −(1 +
Tc)α < 0, (Bc +Rc1br) is always larger than Bc +Rc2lr.
Thus, the client will always choose the cooperative strat-
egy in order to maximize its benefit. When the server is
non-cooperative, the benefit of the client is Rc3br − Lc
when being cooperative and Rc1br−Lc when being non-
cooperative. Since Dd ∈ [−1, 1), Rc3 = α > Dd ∗ α =
Rc4, the client would always choose to be cooperative.
Therefore, cooperation is the dominate strategy for client
since this strategy leads to more benefit no matter which
strategy the server chooses.

We next analyze the action of the server. When the
client is cooperative, the best strategy of the server
depends on the punishment for non-cooperative service.
If the punishment is large enough that Rs1br−Ls>Bs+
Rs3lr, cooperation brings more benefit to the server
than the non-cooperation strategy. Clearly, we can set
αbr > Ls and αlr > Bs to satisfy this. The condition
can be transformed to (1 + TcYc/10)αbr − Ls>Bs − (1 +
Tc|Yc|/10)(1 + Ts)αlr, which is satisfied when αbr > Ls
and αlr > Bs. When the client is non-cooperative, the
reward for the server when it is cooperative and non-
cooperative is α and Dd(1 + TcYc/10)α, respectively.
Therefore, the best strategy for the server depends on
whether the collusion detection is effective enough to
make Dd(1 + TcYc/10) < 1. If yes, cooperation is the
dominate strategy for the server since it leads to the
highest benefit no matter what the client chooses.

In conclusion, we first configure α so that it satisfies
αbr > Ls and αlr > Bs. Then, if Dd(1 + TcYc/10) < 1,
strategy (Co., Co.) is both the Nash equilibrium point
(NEP) [27] and Pareto-optimal [28]. If Dd(1+TcYc/10) ≥
1, strategy (Co., Co.) is not the Pareto-optimal but is the
NEP since the client would always choose cooperation as
discussed previously, and the server would also choose
the cooperative strategy in order to gain the maximal
benefits. This result justifies that nodes would choose to
be cooperative with SocialTrust.

4.5 Improvement over Previous Reputation Systems
We further analyze how SocialTrust realizes the contri-
butions claimed in Section 1 in below.

4.5.1 Reducing Reputation Querying Cost
Recall that SocialTrust utilizes the social network to
reduce the reputation querying cost, as introduced in
Section 4.2. We then check the percentage of reputation
queries (Psc) that can be avoided in SocialTrust.

We assume that the servers that can satisfy a request
are evenly distributed among all nodes. We use M to
denote the total number of nodes in the system. Let
mi be the number of service requests generated by
node i, Ks be the average number of available servers
for a request, and nfpi be the number of friends and
partners node Ni has. Then, the probability that none of
the available servers is a friend or partner (Pφ) can be
calculated by Pφ = (1− nfpi/M)Ks . Then,

Psc =

M∑
i=1

((1− (1− nfpi/M)Ks)Ksmi)/

M∑
i=1

Ksmi (6)

As shown in Equation (6), when nodes build friend-
ships/partnerships in the network, Psc is larger than
0. Furthermore, since a node is more likely to find
requested services from its friends or partners, the actual
Psc should be larger than that calculated by Equation 6.
This means SocialTrust can indeed reduce the reputation
querying cost in P2P file sharing systems.

Note that the extra costs brought about by Social-
Trust, i.e., those for service rating and rating accu-
racy/comfirmation check, commonly exist in reputation
systems for P2P file sharing systems. Therefore, the claim
that SocialTrust can save cost is made on the comparison
with other reputation systems.

4.5.2 Providing Accurate Reputation Evaluation
Traditional reputation systems do not consider social
network properties in reputation reward or punishment.
In some of these systems (e.g., EigenTrust), the reputa-
tion of a rater is used as the weight to measure the cred-
ibility of its reputation feedback. Then, the reputation
update in these methods in the four scenarios during
the reputation evaluation can be shown as:

R′s1 = (1 +Rc ∗ Yc) ∗ α, R′c1 = α
R′s2 = α, R′c2 = −α
R′s3 = −(1 +Rc ∗ Yc) ∗ α, R′c3 = α
R′s4 = Dd ∗ (1 +Rc ∗ Yc) ∗ α, R′c4 = Dd ∗ α

(7)

where Rc denotes the reputation value of the client
(rater). Comparing Eq. (7) with Eq. (2) and Eq. (4), we
see that in calculating the reward and punishment for
the server, rather than using Rc as in traditional meth-
ods, SocialTrust uses the client’s impact factor, which is
determined by both its reputation (Rc) and social degree.
SocialTrust leverages the social network property that
higher-degree or higher-reputed nodes tend to be more
trustable in measuring the credibility of a rater’s reputa-
tion feedback. Thus, it offers more accurate reputation
measurement and mitigates the negative influence on
reputation evaluation caused by dishonest ratings, as
shown later in the experiment (Figures 5 and 6).

4.5.3 Encouraging Continuous Cooperation
SocialTrust can encourage nodes to be continuous coop-
eration through both the designed social network and
the reputation reward/punishment system.

Firstly, Eq. (6) indicates that the more friends/partners
a node has, the more reputation queries (i.e., cost) it can
save. As stated in Section 4.1, the friendship is usually
stable while the partnership is built dynamically. If a
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node has a high reputation, it can pass the reputation
thresholds of more nodes and be accepted as the partner
of more nodes. As a result, a node would not maintain its
reputation value barely above the threshold but would
like to accumulate its reputation as high as possible to
save more cost on reputation querying.

Secondly, comparing Eq. (7) with Eq. (3) and Eq. (4),
we see that unlike SocialTrust, traditional methods do
not relate the punishment for a non-cooperative node
to its reputation. Thus, strategic high-reputed nodes can
occasionally be non-cooperative while maintaining re-
puted status to gain unfair advantages. On the contrary,
SocialTrust relates the punishment to a node’s impact
factor, which means a node’s reputation increases slowly
but drops quickly if it behaves maliciously. Such a design
can motivate nodes to be continually cooperative.

4.6 Preventing Attacks
In this section, we further discuss some attacks in cur-

rent reputation systems, i.e., he-said-she-said attack [29],
denial of service (DoS) [30], whitewashing and traitor
attack [31], and collusion [31]. We introduce how Social-
Trust prevents these attacks in below sections.

4.6.1 He-said-she-said Attack
In the he-said-she-said attack [29], the claims from the
server and client are not consistent. For example, the
server may claim that it has provided a file correctly
while the client claims that it only received a faulty or
malicious file. To prevent this attack, we need to check
whether the claim from the client, i.e., rating, match
with the claim from the server, i.e., actual quality of the
service. This judgement is also needed by the reputation
evaluation process, as mentioned in Section 4.3.

In order for the TA to judge correctly, we use the public
and private key technique to ensure the authenticity of
the requests and files provided by servers. When a node
generates a request or provides a file, it encrypts the
checksum of the request or file with its private key, and
sends the encrypted checksum along with the request
or the file. After the file provision interaction, if either
side files a claim to the TA, the TA requires the server to
submit its received request from the client and requires
the client to submit its received file from the server. The
TA then checks the authenticity of the submitted request
and file based on the attached checksum using the public
keys of the client and the server. Based on the request
and provided file, the TA can determine whether the file
is authentic and satisfies the request, and then makes
a judgement of the claim. We will explain the details
for this judgement later on. In order not to be detected,
the non-cooperative client or server may fabricate its
received request or file or may not submit their received
request or file. If any side that fails to provide its
received request/file or its provided file/request cannot
be verified by the checksum using the corresponding
public key, it is regarded as non-cooperation.

The checksum can ensure that the submitted re-
quest/file is not fabricated. However, the client may
give a dishonest rating or the server may provide a
faulty file or reject a honest rating. Thus, the TA may

need to further check whether the quality of the offered
file satisfies the request. As in [4], [6]–[8], we focus
on the reputation system rather than how to check the
consistency between the rating and service. Therefore,
we give a general guidance in the paper. Specifically, the
TA compares the file with its previously verified high-
quality files for the request, i.e., these that have received
high ratings for the same request, to determine whether
the file satisfies the request. In case such a verification file
does not exist, the TA uses voting from trustable third
parties, e.g., selected high-reputation nodes, to check
the quality of the offered file. Automatic file quality
detection algorithms proposed by other researchers can
also be adopted by SocialTrust to realize this purpose.

After the checking, the TA detects which side has
lied about the service and conduct corresponding pun-
ishment. Finally, the he-said-she-said attack can be pre-
vented in SocialTrust and server reputation can still be
evaluated correctly since nodes cannot lie about their
received ratings or services.

4.6.2 Deny of Service

In the Denial of Service attack [30], attackers attempt
to cause the TA to become overloaded (e.g. by sending
many reputation value queries) to prevent the calcu-
lation or dissemination of reputation values and cause
denial of services on the TA. Attackers may also attempt
to lower the reputation of victim nodes, so their service
requests will be rejects by other nodes, thus causing
denial of services on nodes. Since the latter case has
already been discussed in Section 4.6.1, we focus on how
to prevent malicious nodes from overloading the TA and
consequently intervening the calculation or dissemina-
tion of reputation values in this subsection.

In the Denial of Service attack, malicious nodes query
node reputation values (misbehavior 1) or create false
claims on the QoS of servers or the ratings of clients
(misbehavior 2) frequently as mentioned in the previ-
ous subsection, which require significant network or
computational resources. Consequently, the TA would
be overloaded and cannot provide services regularly,
thereby leading to denial of services. To prevent such
an attack, we enforce two additional strategies in the TA
to deter the two misbehaviors, respectively.
• Misbehavior 1: The TA sets a quota, Nqr, for the

number of reputation queries each node can gener-
ate in a unit time, e.g., an hour, to limit the number
of reputation queries on the TA. When the number
of a node’s reputation queries exceeds the assigned
quota, its queries are rejected by the TA directly.

• Misbehavior 2: The TA gives severe punishment to
nodes that are detected to have such a misbehavior,
i.e., provide incorrect claiming about the quality of
service or the rating. Section 4.6.1 introduces how
TA can detect such a misbehavior.

Both the two strategies constrain the overhead on the
TA, thereby thwarting the denial of service attack. In
the first strategy, Nqr is decided by the normal maximal
number of queries TA can handle in a unit time divided
by the total number of nodes in the system. Further,
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the second strategy encourages nodes to be honest on
providing services or rating received services.

4.6.3 Whitewashing and Traitor Attack
In the whitewashing and traitor attack [31], malicious
users purposely exploit the reputation system to recover
their reputation values. In the whitewashing attack, a
low-reputed user can simply discard its current ID and
registers for a new ID to gain the initialization repu-
tation. In the traitor attack, a user can behave unco-
operatively until its reputation drops right above the
threshold for malicious behavior detection, and then
behave cooperatively to earn some reputation. Then, the
user is always regarded as cooperative node.

The whitewashing attack can be alleviated by 1) as-
signing a low initial reputation, i.e. slightly over the
threshold, 2) increasing the difficulty of acquiring a new
ID, e.g., requiring references from reputed users, and 3)
binding user ID with its other attributes (e.g., IP or MAC
address) to limit the number of IDs a user can create. As
a result, users are encouraged to behave cooperatively
rather than relying on creating new IDs to be able to
provide or receive services in the system.

The traitor attack can be naturally thwarted in So-
cialTrust. In SocialTrust, once a node’s reputation value
becomes low, its friendships or partnerships with others
would be removed. Recall that nodes prefer to select
friends or partners as the server for their requests. Then,
the node has a low probability of being selected as
the server. This means that the node will have few
opportunities to earn credits to recover its reputation. As
a result, the traitor attack is not effective in SocialTrust
since once a node’s reputation value becomes low, it is
very difficult to recover it.

4.6.4 Collusion
In collusion attack [31], a group of nodes purposely pro-

vide positive ratings to each other to boost their reputa-
tion values. Previous studies showed that colluders tend
to provide low QoS to others [25], [32]. Thus, collusion
would make the reputation system malfunction as clients
are misled to choose colluders with high reputations as
servers, which actually will provide low QoS.

In SocialTrust, a node creates new partners based on
reputation values. Then, with collusion, nodes will also
be misled to choose colluders as their partners. Also,
since nodes add friends based on its their decisions, they
may also add colluding nodes as friends mistakenly. In
order to restrain this negative impact of the collusion,
we enforce a strategy to remove friends/partners in
SocialTrust. Specifically, when a node finds that the
percentage of good services (gs) it has received from
a friend/partner, is lower than a predefined threshold
Tgs, it will remove the friend/partner. We can set Tgs
to a large value (e.g., 80%) since friends/partners are
supposed to provide good services to each other.

With such an additional strategy, colluders can
hardly be friends or partners of non-colluders since
they rarely behave cooperatively when interacting with
non-colluders [25], [32]. They may only build friend-
ships/partnerships with other colluders. Since a client

high weight link

low weight link

colluder

non‐colluder

Fig. 2: Demonstration of collusion group in reputation rating graph.

node always firstly selects its friends/partners for ser-
vices, thus colluders have few opportunities to receive
service requests and provide faulty files to others,
though they have high reputation values. This means
that colluders cannot benefit from the boosted high
reputation values. Eradicating the benefits of collusion
discourage nodes to be colluders and prevent the collu-
sion in SocialTrust. Note that such an additional strategy
is enabled in addition to the friendship/partnership
maintenance strategy in Section 4.1 only when colluder
prevention component is selected for SocialTrust.

We further introduce a method to detect colluders.
Since colluders tend to provide high ratings to each other
frequently and offer low QoS to non-colluders (hence
receiving low ratings from non-colluders), we can draw
a reputation rating graph to detect colluding groups. In
the reputation rating graph, each user is represented by
a vertex, and two vertices are connected if they have had
interactions. The weight of each link is the average rating
between the two connected nodes in a unit time period.
Then, since colluders tend to provide high ratings to
each other and receive low ratings from nodes outside
the colluding group, colluders are connected with high
weight links and low-weight links with outside nodes,
as shown in Figure 2. If we remove the links with
weights lower than a threshold, Tw, from the reputation
rating graph, the colluding groups are shown as isolated
connected clusters in the group. We can then identify
such clusters as the suspicious colluding groups.

As a result, nodes can still receive high QoS services
from “colluders” or isolate “colluders” from providing
services to them, which greatly alleviates the negative
effects of collusion in SocialTrust.

5 PERFORMANCE EVALUATION

We used the trace from LiveJournal [33] in the test. Live-
Journal is a free online community with more than 10
million members. We randomly selected a medium social
network with 10,500 users from the trace for our test. We
use the friend relationships in the trace to construct the
friendship links in SocialTrust. Such a setting reflects real
world friendship networks. Partnerships among nodes
are built gradually in the test. We randomly selected 520
nodes as non-cooperative nodes in the test.

We adopted a simple model to simulate the willing-
ness to be cooperative. We assigned each node (both co-
operative and non-cooperative) a level (L) randomly in
range [1, 10]. For a cooperative (non-cooperative) node,
the higher its level (L) is, the more likely it behaves coop-
eratively (non-cooperatively). We set the probabilities of
levels 1 to 10 linearly in the range [0.55, 1], i.e., the start
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probability is 0.55 for level 1 and the maximal probability
is 1 for level 10. Then, the probability of a cooperative
node to behave cooperatively (Pg) and the probability
for a non-cooperative node to behave non-cooperatively
(Pb) are defined as P = 0.55+0.05∗(L−1). Such a setting
means that the higher level a node is, the more likely it
behaves cooperatively or non-cooperatively.

As in most reputation system, the reputation value
of a node lies in the range of [-1,1]. Initially, all nodes
are regarded as cooperative nodes by setting their initial
reputation value in range [0,1]. Nodes with negative rep-
utation values are identified as non-cooperative nodes,
and their services requests are always rejected by others.
The reputation threshold of partnership (Tr) of a node
was randomly chosen from a medium range of [0.3,
0.8]. Based on the average interaction frequency in the
trace, the contact frequency threshold (Tf ) was set to 1
transaction every 50 rounds. Also, based on analysis of
the trace, the reward unit (α) was set to 0.04.

In the test, each experiment consists of 200 rounds.
In each round, we reasonably assume each node has
60% probability to generate a request. We assume that
there are m nodes containing the requested file for each
request. Considering the total number of nodes is not
huge, m is randomly selected from [3, 6]. We let the file
quality fall in range [-10,10]. For the server, the QoS of its
service is randomly selected from (0,10] and [-10, 0]when
it is cooperative and non-cooperative, respectively. If the
client is cooperative, it honestly gives rating QoS + r,
where r represents the rating bias and is chosen from
[-1,1] randomly. The final rating value is in the range
[-10, 10]. If the client is non-cooperative, it gives rating
randomly selected from [-10,0] for cooperative service
and (0,10] for non-cooperative service.

We compared SocialTrust with SocialOnly [9], [10], [12]
and EigenTrust [7]. They rely on social networks and
user feedbacks for reputation management, respectively.
SocialOnly is adapted from previous social network
based P2P services, e.g., TRIBLER [9], Turtle [10], and
F2F [12]. It uses the same concept in these works, i.e.,
friendship fosters cooperation, to deduce server reputa-
tions by letting each node query the reputation values
of available servers from its friends. A node considers
a server as non-cooperative when at least four of its
friends report negative reputation value for the server.
If none of a node’s friends knows the reputation of
available servers, the node randomly selects a server.
EigenTrust [3] calculates the reputation of a node based
on the feedbacks from other nodes weighted by the
rater’s reputation, while SocialTrust weights the feed-
back based on impact factor. We set the confidence
interval to 95% in the experiment.

5.1 Efficiency of Reputation Systems
Figure 3(a) shows the reputation querying cost, mea-

sured by the total number of generated reputation
queries, in the three reputation systems. We see that the
results follow SocialOnly>EigenTrust>SocialTrust, and
SocialOnly generates much higher cost than SocialTrust
and EigenTrust. For SocialOnly, each node needs to
query all its friends for each available server, leading

to a large amount of reputation queries. In SocialTrust,
friendship and partnership are exploited to alleviate the
reputation query for available servers. In EigenTrust, the
service requester needs to query the reputation of all
available servers. Therefore, SocialTrust produces lower
cost than EigenTrust. This result justifies that SocialTrust
realizes the goal of reducing reputation querying cost by
leveraging friendship and partnership. Though the cost
saving is resulted from selecting friends/partners for
service directly, we can see later that such a design does
not sacrifice the effectiveness of SocialTrust in guiding
trustworthy server selection.

5.2 Effectiveness of Reputation Systems

Figure 3(b) illustrates the percentage of correctly de-
tected non-cooperative nodes throughout the test. We
find that the results follow SocialTrust>EigenTrust>>
SocialOnly in the first 180 rounds. Also, both SocialTrust
and EigenTrust can detect almost all non-cooperative
nodes in the end while SocialOnly can only identify
a small portion of non-cooperative nodes. SocialTrust
decides the punishment for a non-cooperative node
based on its impact factor. Thus, it can decrease the
reputation of non-cooperative nodes with high impact
factor quickly. Moreover, SocialTrust adjusts the rating
based on the impact factor of the rater. As a result,
its reputation evaluation can more accurately reflect the
behavior of nodes, leading to better detection of non-
cooperative nodes. EigenTrust only considers the rater’s
reputation for the credibility of its reputation feedback.
Therefore, the reputation evaluation in EigenTrust is
not as accurate as that in SocialTrust, especially for
high reputation nodes, leading to a slow detection. For
SocialOnly, each node usually has limited interaction
records and thereby a node’s friends can provide very
limited and updated reputation information of available
servers. As a result, SocialOnly can only detect a small
amount of non-cooperative nodes.

Figure 3(c) presents the number of falsely identified
non-cooperative nodes. We see that the results follow
SocialOnly >EigenTrust>SocialTrust. SocialOnly has the
most false detections due to its local reputation calcu-
lation with limited interaction records. For SocialTrust,
it generates fewer false detections than EigenTrust since
it adjusts the reputation punishment by impact factor.
Therefore, when a node has low impact factor, the
punishment for its non-cooperative behavior is relatively
low, which prevents it from falling into non-cooperation
category occasionally. The consideration of the rater’s
impact factor also leads to more accurate reputation
evaluation in SocialTrust.

Figure 3(d) plots the number of non-cooperative ser-
vices received by all nodes. We see that the result follows
SocialOnly >EigenTrust>SocialTrust. This is because the
abilities of the three methods to exclude non-cooperative
nodes follow SocialOnly>EigenTrust>SocialTrust, as
shown in Figure 3(b). The more unidentified non-
cooperative nodes in the system, the more non-
cooperative services. This result further verifies the effi-
ciency of SocialTrust in excluding non-cooperative nodes
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(d) Number of received non-
cooperative services.Fig. 3: Efficiency and effectiveness of the three reputation systems.

and preventing non-cooperative services in P2P system.
The result also shows that the scheme in SocialTrust that
selects friends directly when available doesn’t compro-
mise the performance since friends are more likely to be
cooperative with each other [9]–[12], [14].

Figure 4(a) shows the number of cooperative ser-
vices received by non-cooperative nodes. As the num-
ber of rounds increases, SocialOnly cannot prevent
non-cooperative nodes from receiving services, while
EigenTrust and SocialTrust successfully exclude non-
cooperative nodes from receiving services. SocialTrust
can prevent more services for non-cooperative nodes
than EigenTrust. This is because the number of coop-
erative services received by non-cooperative nodes is
proportional to the number of non-cooperative nodes
that are not identified. As demonstrated in Figure 3(b),
the ability to exclude non-cooperative nodes follow
SocialTrust>EigenTrust>SocialOnly.

Figure 4(b) plots the number of rejected service re-
quests from cooperative nodes. We see that the number
follows the same relationship as in Figure 3(c) (i.e.
SocialOnly>EigenTrust>SocialTrust). This is because the
number of rejected service requests from cooperative
nodes is proportional to the number of falsely detected
non-cooperative nodes. When cooperative nodes are
falsely detected as non-cooperative nodes, their subse-
quent requests are rejected. Therefore, SocialTrust gen-
erates the least rejected service requests, and EigenTrust
produces fewer rejected service requests than SocialOnly.
This further justifies that SocialTrust is more reliable than
EigenTrust and SocialOnly on reputation evaluation.

In the end of the test, each node has 8.9 friends and
4.3 partners on average. This is because the LiveJournal
trace is not from a very active social network and we
only had 200 rounds of interactions in the experiment.
However, such a limited number of friends/partners can
save around 20% reputation query cost, as shown in
Figure 3(a). This is because, as indicated by previous
research [34]–[36], friends and partners are more likely
to share files with each other. We also see that with the
social network, SocialTrust can better ensure coopera-
tive file sharing than other methods. Therefore, if we
use a more active trace with more social relationships,
the efficiency improvement can be better. In summary,
social relationships can positively enhance the overall
efficiency of the P2P file sharing system.

5.3 Accuracy of Reputation Evaluation
In this experiment, we evaluate the accuracy of the repu-
tation systems in measuring how cooperative or how un-

0.0

1.0

2.0

3.0

4.0

5.0

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r 
of
 s
er
vi
ce
s 
re
ce
iv
ed

 
by
  n
on

‐c
oo

p.
 n
od

es
 (X

10
4 )

Number of rounds

SocialTrust
SocialOnly
EigenTrust

(a) Number of services received
by non-cooperative nodes.

0

1

2

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r 
of
 re

je
ct
ed

 re
q.
 

fr
om

 c
oo

p.
 n
od

es
 (x
10

3 )

Number of rounds

SocialTrust
SocialOnly
EigenTrust

(b) Number of rejected requests
from cooperative nodes.

Fig. 4: Effectiveness of reputation systems.
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Fig. 5: Accuracy in reputation evaluation of cooperative nodes.

cooperative a node is. The degree of a server’s QoS and a
rater’s rating honesty are decided by their impact factors.
If the selected server is cooperative in serving, the QoS
of its service is calculated as r + 10 ∗ Ti/TMax, where
Ti is the node’s impact factor, and TMax is the maximal
impact factor. If the calculated QoS is less than 0 or larger
than 10, it is set to 0.1 or 10, respectively. If the client is
cooperative, it gives rating by: QoS+ r ∗ (1−Di/DMax),
where its social degree Di controls the deviation from the
honest rating. If the client is non-cooperative, it’s rating
is randomly selected from range [-10,0]. Here, we do
not set the rating fluctuation associated with the rater’s
social degree because we only want to test the effect of
punishing nodes based on their impact factors. If the
selected server is non-cooperative, the QoS of its service
is calculated as −(r + Ti/TMax), which is also confined
to the range of [-10, 0]. Then, if the client is cooperative,
it gives rating by: QoS + r ∗ (1− Ti/TMax). Otherwise, it
gives rating randomly in range (0, 10].

The normalized reputation increase refers to the aver-
age reputation increase per interaction, and it is calcu-
lated as the final reputation value increase divided by the
total number of interactions. The normalized node level
represents how actually cooperative a node is. Recall
that the probability of a node to behave cooperatively
is decided by its node level, and its QoS or rating
honesty is decided by its social degree. Therefore, node
i’s normalized node level is defined as NL = 0.5 ∗
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Fig. 6: Accuracy in reputation evaluation of non-cooperative nodes.

L/Lmax + 0.5 ∗ T/Tmax, in which L and T are the level
and the average impact factor, while Lmax and Tmax are
their maximal values, respectively.

Since SocialOnly does not provide a global reputation
for each node, we only measured that of SocialTrust
and EigenTrust. We rank all cooperative nodes by their
normalized node levels, and show each node’s normal-
ized node level and normalized reputation increase in
SocialTrust and EigenTrust in Figure 5(a) and Figure 5(b),
respectively. We see that SocialTrust leads to more similar
trend between the normalized reputation increase and
the normalized node level. The reason is that SocialTrust
considers both a node’s social degree and reputation
in evaluating a node’s impact factor, rather than only
considering reputation as in EigenTrust.

We also tested the relationship between the normal-
ized reputation decrease and normalized node level
for non-cooperative nodes. The results are shown in
Figure 6(a) and Figure 6(b). The normalized reputa-
tion decrease is calculated as the average reputation
decrease per interaction. We see that the normalized
reputation decrease more closely approximates the nor-
malized node level in SocialTrust than in EigenTrust.
This is because SocialTrust utilizes the trust of a node
to adjust the punishment for non-cooperative behaviors:
high-trust nodes receive more reputation punishment.
Above results demonstrate the accuracy of SocialTrust
in evaluating the reputation by considering node trust.

We define the correlation between the normalized rep-
utation increase and normalized node level as

C =
N
∑
RL−

∑
R
∑
L√

(N
∑
R2 − (

∑
R)2)(N

∑
L2 − (

∑
L)2)

(8)

where N denotes the total number of cooperative nodes,
L means the normalized level of a node, and R is the
normalized reputation increase of the node. Figure 7
shows the correlation every 10 rounds. We find that So-
cialTrust always generates much higher correlation than
EigenTrust. This is because SocialTrust provides more
accurate reputation evaluation, as explained previously.
We also see that the correlation between the two metrics
increases when the number of rounds increases. This is
because with the experiment going on, the evaluated
reputation of each node can more accurately reflect its
level of cooperative behavior.

5.4 Effect of Friendship in SocialTrust and So-
cialOnly
Both SocialTrust and SocialOnly utilize social friendship
in reputation evaluation. In SocialTrust, friendships and
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Fig. 8: Effect of friendship in SocialTrust and SocialOnly.

partnerships are exploited to reduce reputation queries
by directly selecting friends/partners from available
servers, while in SocialOnly, friendship is used to pro-
vide reputation information of available servers. We fur-
ther measure the effect of friendship in the two systems.

We plot the percentage of servers from friends, part-
ners and others in Figure 8(a). We see that the percentage
of servers from friend-list remains almost stable, and the
percentage of servers from partner-list increases from 0
to about 13% from round 1 to round 200. This is because
the probability that available servers are in a node’s
friend list is low in the beginning. Partners are accu-
mulated as time goes on, which shows that nodes accu-
mulate reputation from interactions and build trustable
partnerships gradually to save reputation querying cost.

Figure 8(b) shows the percentage of servers whose
reputation information cannot be provided by friends
in SocialOnly. It maintains high (i.e., >90%) throughout
the experiment and decreases slightly as the number
of rounds increases. Though the number of nodes that
a node interacts increases as the experiment runs, the
number is very limited compared to the network size.
Therefore, nodes have limited reputation information of
other nodes in the system. The limited reputation infor-
mation held by individual nodes leads to poor perfor-
mance of SocialOnly, as shown in previous experiments.
Combining the results in Figure 8(a) and Figure 8(b), we
conclude that friendship can better serve the purpose of
representing direct trust than the purpose of providing
reputation information.

5.5 Collusion Detection Performance
We further measured the performance to prevent col-
lusion attack introduced in Section 4.6.4. We purposely
randomly selects 3 nodes and regard each node and its
friends in the LiveJournal trace as a colluding group.
Finally, the three colluding groups contain 11, 13, and
14 nodes, respectively. These colluding nodes always
provide high ratings to each other but low QoS services
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Fig. 9: Effectiveness of collusion detection methods.

to nodes outside the colluding group. Other settings are
the same as mentioned in the beginning of Section 5.

We define intra-links as the links connecting nodes in
the colluding group and outgoing-links as these connect-
ing a colluder with a non-colluder. We first measured the
average weights of intra- and outgoing-links on the rep-
utation rating graph, as shown in Figure 2. The weight of
a link is calculated as the average rating between the two
connected nodes in a unit time period. The test results
for the three colluding groups are shown in Figure 9(a).
We see that the average weight of outgoing-links is very
small compared to that of the intra-links. Such a result
verifies that the design mentioned in Section 4.6.4 can
detect collusion groups.

Outside friends/partners refer to the friends/partners
outside a colluding group. We further measured the av-
erage percentage of outside friends/partners of the three
colluding groups, as shown in Figure 9(b). We find that
they have only about 10% of outside friends/partners
on average. This is because with the scheme pro-
posed in Section 4.6.4, normal nodes terminate the
friendships/partnerships with the colluders after several
rounds of interactions. Such a result shows that the
proposed method can isolate colluders, thereby reducing
the risks of receiving faulty files from colluders.

6 EXPERIMENT ON PLANETLAB

We further deployed SocialTrust on the real-world
PlanetLab [37] testbed. In this experiment, since there
is no data on whether a PlanetLab node is willing to
be cooperative or not, we simulate such a metric by
a subjective property of each node, i.e., the average
communication delay with all other nodes. The service
latency is calculated as the period of time a node waits
before receiving the requested file. We identified 100
PlanetLab nodes that have stable response latency. Be-
cause a server’s clients can be any node in the system,
the effect of the server-client geographical distance on
the final global reputation is eliminated. We let each
PlanetLab node represent 100 virtual nodes. We still use
the social relationship from the LiveJournal trace [33]
to build the initial social network in PlanetLab. We first
measured the average delay of each node to the requests
from all other nodes, and ranked the average delays in a
descending order. We choose the 94th percentile value as
the threshold of cooperation. Nodes with delays lower
than this threshold are regarded as non-cooperative
nodes, resulting in 629 non-cooperative nodes. Other
settings are the same as those in the simulation.

6.1 Effectiveness of Reputation Systems
We measured the accuracy of trust evaluation in the
Planetlab test: percentage of of correct detections, the
number of false detections, number of non-cooperative
services received by all nodes, number of good services
for non-cooperation nodes. The results are shown in
Figure 10(a), Figure 10(b), Figure 10(c), and Figure 10(d),
respectively. We find that the three methods show the
same relationship as in the corresponding simulation
results shown in Figure 3(b), Figure 3(c), Figure 3(d),
and Figure 4(a) due to the same reasons. This result
further demonstrates the effectiveness of SocialTrust in
reputation evaluation in a real environment due to the
same reasons stated in previous simulation.

In order to further show SocialTrust’s ability to re-
flect a node’s actual behavior in providing service, we
designed another algorithm, named Random, in which
a node randomly picks an available server. We then
measured their accumulation service latency, i.e., the
accumulated file quality. The test results show that So-
cialTrust presents about 10% less service latency than
Random, i.e., the QoS is enhanced by 10%. This is
because SocialTrust can accurately reflect the actual rep-
utation of the node, as previously explained. Guided by
the calculated reputations based on real node QoS, nodes
can always choose the server with low overall delay for
service. Then, the overall latency can be reduced. This
result confirms that SocialTrust can effectively evaluate
node reputation in real environment.

7 CONCLUSIONS

In this paper, we propose a social network based reputa-
tion system for P2P networks, namely SocialTrust, which
exploits social network properties to save reputation
querying cost and enhance the reputation evaluation ac-
curacy. Since friends/partners in social networks usually
trust each other, SocialTrust lets each node directly select
its friends/partners, if available, as service provider
without querying their reputations, thereby reducing
the reputation querying cost. Further, SocialTrust inte-
grates both social degree and reputation of a node as
its impact factor for reputation clearance. Since nodes
with high social degree/reputation are more likely to
be selected as servers, they are more harmful when
they are non-cooperative. Therefore, the impact factor is
used to adjust the reputation reward and punishment,
thus motivating nodes to be continually cooperative.
Extensive simulation demonstrates the efficiency and
effectiveness of SocialTrust. In the future, we plan to
investigate the correlation between the friendship and
reputation evaluation to further enhance the accuracy of
reputation evaluation.
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